Mount Etna had glaciers during last Ice Age

The Mediterranean mountains were repeatedly glaciated during the last Ice Age which ended around 11,500 years ago[1]. Glaciers were present in most of the major mountainous areas from Morocco in the west to the Black Sea coast of Turkey in the east.

Some mountains supported extensive ice caps and ice fields with valley glaciers tens of kilometers long. Other massifs sustained only small-scale ice masses, although this was the exception rather than the norm. Glaciers still exist today and there is evidence that small glaciers were a common sight in many regions during the Little Ice Age.
The Mediterranean mountains are important for palaeoclimate research because of their position in the mid-latitudes and sensitivity to changes in the climate regimes of adjacent areas including the North Atlantic. These mountains are also important areas of biodiversity and long-term biological change through the Quaternary ice age.

Mount Etna (3329 meters) on Sicily is by far the highest mountain on the Mediterranean islands and one of the highest mountains in the entire region, yet clear evidence of glaciation has been buried by lava flows or obliterated by explosive volcanic activity, perhaps most recently in the Late glacial[2].
[U-shaped valley on the slope of Mt. Etna]

However, this volcano would have certainly been glaciated[3][4]. Researchers estimated a Pleistocene snowline of circa 2500 meter and other scientists have identified morphological evidence of a glacial valley on the northeastern flank of mount Etna[5]. They think it is reasonable to hypothesize that, during the Quaternary glaciation, a portion of the volcanic edifice could have been covered by thick ice sheets that excavated U-shaped valleys along their pathway. They have found this kind of evidence only in a small valley located in this area, that the scientists interpret to be of glacial origin.

[1] Hughes, Woodward (eds): Quaternary Glaciation in the Mediterranean Mountains – 2017
[2] Albert et al: Late glacial explosive activity on Mount Etna: Implications for proximal–distal tephra correlations and the synchronisation of Mediterranean archives in Journal of Volcanology and Geothermal Research - 2013
[3] Neri et al: Incidenza dei ghiaccia pleistocenici nell’evoluzione morfo-strutturale del Vulcano Etna (Sicilia, Italia) in Terra Glacialis - 2002
[4] Neri et al: Ghiacciai pleistocenici dell’Etna: un problema aperto in Istituto Lombardo, Accademia di Scienze e Lettere (Rendiconti Scienze) - 1994
[5] Carveni et al: First finding of glacial morphology on Mt. Etna volcano north-eastern flank (Sicily) in Geoitalia - 2007

Geen opmerkingen:

Een reactie plaatsen